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CHAPTER 1
INTRODUCT ION

Due to the high strength-to-weight and stiffness-to-

weight ratios, composite materials are ideal for weight-

sensitive structures such as aircraft, spacecraft, and

automotive vehicles. In recent years, with the advent of

jet propulsion, particularly with the current increased

interest in short take-off and landing aircraft, it has

become necessary to pay increasing attention to the

higher frequency motions of such structures. These

motions depend strongly on the structure's damping or

capability for dissipation of vibratory energy [1]. In

addition, a new type of excitation han become more preva-

lent, random excitation either of mechanical or acoustical

origin [2]. For example, jet engine exhaust generally

contains a noise spectrum wide enough to excite most of

the natural frequencies encountered in aircraft structures

[3]. The natural resonance phenomena, so produced, can be

very destructive. Since near resonant conditions can no

longer be avoided in many types of structures, the maximi-

zation of damping within a structural system provides a

most useful concept in controlling resonance [4].

Unfortunately, as will be shown in later chapters, high

damping is mostly coupled with low stiffness, and high

S 1
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stiffness is mostly coupled with low damping. Therefore,

the optimization of damping and of the stiffness-to-weight

ratio is a practical idea in designing a proper composite

material to be used in aircraft and space vehicles.

1.1 Literature Survey

Most results from a series of researches on damping

beginning in the 1920's [5] indicated that damping is a

material property.

Kimball and Lovell (5] experimentally showed that

for stress cycles of frequency of from two to three a

minute, up to fifty a second the frictional loss (a kind of

energy loss) is indcpcndent of the frequenc, hbut is npen-

dent on the amplitude of strain of the cycles for eighteen

different solids, including several metals, glass, cellu-

loid, rubber and maple wood, when strain was below the

elastic limit. Crandall (6] pointed out that the values for

material damping which will be introduced in Section 2.3.3

encountered in practice ranged from about 0.00001 to 0.2;

however, Lazan [4] pointed out the material damping ranged

from 0.001 to 0.1. And the material damping depends on

both the amplitude and frequency of the oscillation. If,

however, the system is completely linear, then damping is

independent of amplitude [6].

Recently, the composite materials got more attention

in industrial application. Lazan (41 gave a detailed

review on material damping of materials and material
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composites. Kume, Hashimoto and Maeda [7] used the damping-

stress function, derived by Lazan [8], to calculate the

material damping of cantilever beams. They found that low

order modes of a cantilever beam with equal maximum stress

amplitude gave almost the same material damping, theoreti-

cally, and experimental results have the same order of

magnitude as the theoretical results when the maximum stress

amplitude is less than a certain value. Schultz and Tsai

(9] indicated that unidirectional glass fiber reinforced

composites exhibit anisotropic, linear viscoelastic

behavior when those undergoing small oscillation and that

damping increases in magnitude with change in fiber orien-

tation angle with respect to loading direction in the

orde•r O, 2205°, 900, 450. Ni, Li.L, and Adams [10, 1]_

used the laminated plate theory and two-dimensional energy

approach to predict the flexural damping of laminated

composites. In thLir work, damping coefficient was deter-

mined by free-free flexural inodes of vibration [12]. Siu

and Bert [13] discussed the vibration of composite plates

having material damping. Suarez, Gibson, and Deobald [14]

observed the dependence of damping on frequency of fiber

reinforced epoxy or polyester. Gibson and Plunkett [15]

found that for small strain, damping and stiffness are

independent of amplitude of strains, but, once the thres-

hold strain is exceeded (i.e., failure starts), the

resulting increase in damping is much more significant

than the corresponding reduction in stiffness. Similar
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results were also observed by Tauchert and Hsu [16). Bert

and Clary [17, 181 gave a complete review on measurement

and analysis of damping and dynamic stiffness for compo-

sites. The first paper to optimize the damping of the

structure was perhaps that of Plunkett and Lee (19]. The

damping of a beam is improved by introducing thin con-

strained visco-elastic layers on the top and bottom of the

structure. These viscoelastic layers are then stiffened

by properly designed constraining layers.

Cox L201 discussed the stress distribution in fibrous

materials. Cox's shear lag stress analysis was later on

used to analyze the stress distribution of short-fiber

""vuwc--'-'t"^s, as "in , sd'n'hotelasticit, r",

24] and finite element methods [25, 261 were used to

investigate the stress concentration in the matrix around

fiber tips of short-fiber composites. Strength of short-

fiber composites was analyzed in several studias (27, 28].

Analysis of complex moduli for such kind of material was

presented in studies [29, 30, 311. High damping of short-

fiber composites was analytically and experimentally

observed in references [31, 32]. Material damping of

randomly orierted and unidirectional laminar short-fiber

composites has been discussed by Sun, Wu, Chaturvedi, and

Gibson [33, 341.

1.2 Scope of This Study

The objectives of this study are to analyze the mate-

rial damping and to optimize the specific stiffness (the
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ratio of the stiffness to the density) and material

damping of continous and/or discontinuous fibers rein-

forced laminated composite structure elements. The work

involved in this research is briefly introduced as

follows:

A. To develop a short-fiber composite model to determine

the moduli of short-fiber composites.

B. To analyze the stiffness and material damping of

unidirectional laminar fiber composites, randomly-

oriented fiber composites, and certain kinds of

laminated fiber composites through classical lami-

nated plate theory approach.

Cr. To ;anavlyze the material damping of laminated fiber

composites by an energy approach, where a three-

dimensional displacement finite element method is

used.

D. To optimize material damping and the specific stiff-

ness of laminated composite plates.

1.3 Material Constants and Ranges of Design Parameters

In this study, four different kinds of widely-used

fiber composites (i.e., glass epoxy, Kevlar epoxy,

graphite epoxy, and boron epoxy) are involved; and much

interest is concentrated on graphite epoxy and Kevlar

epoxy, because, generally speaking, the former has higher

stiffness, while the latter has higher damping.
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In order to compare with the experimental results of

Suarez, etc. (35, 361, the material constants used in this

study are the same as those of the experimental specimens.

Some material constants, which are not given in those

experimental data, are obtained from reference (37].

Unless specially specified, the material constants used in

this study are given in Table 1.1.

The length of fiber is one of the characteristic

parameters of short-fiber composites. Due to the

existence of a critical fiber length, sc (i.e. the minimum

fiber length in which the ultimate strength afu can be

achieved [381), there is a minimum value for fiber length,

s .fu *. 1
d d 2y -r

y

where xy is the matrix yield stress in shear, and d is the

fiber diameter. The lowest Ofu of those four fiber com-

posites is 2750 MPa, as given in reference [371, for

grap.iite T-300. And the matrix yield shear stress is,

according to the manufacturer's test results, 97 MPa of

AS4/3501 graphite-epoxy tape. Therefore, the fiber aspect

ratio, the ratio of fiber length to its diameter, should

be

s/d Z 14.2 1.2

Im
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In this study, the fiber aspect ratio is chosen to be

between 25 and 10000; while the fiber volume fractioni Vf

is chosen to be 0.65 for the most cases or 0.5 for

randomly oriented fiber composites.

Table 1.l: Material Properties Data of the Matrix and
the Fibers

Constants Matrix Fibers

Epoxy Glass Kevlar Graphite Boron

E1 (Gpa) 3.94 72.4 99.8 175.8 381.9

E2 (Gpa) 3.94 13.8 6.9 13.8 35.0

G1 2 (Gpa) 1.465 27.6 13.8 27.6 70.0

V12 0.345 0.22 0.376 0.16 0.21

k (Gpa) 4.236

nj 0.015 0.0015 0.01i 0.0015 0.0019

p(kgim3 ) 1220. 2539. 1479. 1760. 2481.
Ei -_ 2 2 2 2

&2 _1 1 1 1

where &I and ý2 are constants used in HIlpin-Tsai

Equation, nI is the longitudinal damping, k is the bulk

modulus, and p is the density.
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CHAPTER 2
DAMPING

2.1 Definition of Damping

The process by which vibration steadily diminishes in

amplitude is called damping. In many ways, the assumption

that systems possess no damping is a mathematical conven-

ience, rather than a reflection of physical evidence. In

fact, if a system is set in motion and allowed to vibrate

freely, the vibration will eventually die out; the rate of
decay depends on the amount of dampingj. This reduction in

vibrating amplitude occurs because the energy of the

vibrating system is dissipated as friction or heat or is

transmitted as sound [39]. And this is why damping is also

interpreted as any phenomenon within the body of the

material where energy is dissipated [40].

The concept of an undamped system serves not only a

useful purpose in analysis, but can also be justified in

certain circumstances. For example, if the damping is

small and one is interested in the free vibration of a

system over a short interval time, there may not be

sufficient time for the effect of damping to become

noticeable. Similarly, for small damping one may not be

able to notice the effect of damping in the case of a

system with harmonic excitation, provided the driving

8
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frequency is not in the neighborhood of any of the natural

frequencies of the system [411. On the other hand, damp-

ing of a given system should be considered if this system

is subjected to vibration near its resonant frequencies

because damping has a large influence on the amplitude in

the frequency rcjion near resonance (42].

2.2 Damping Mechanism

There are many mathematical models representing damp-

ing. The mechanism of damping can take any of these

forms and often more than one form may be present at a

time. Therefore, in order to analyze or predict the

damping of a given system, one ideally should take into

account all possible damping mechanisms; fortunately, in

most practical cases, one or two mechanisms predominate so

that one may neglect the effect of all others. Three

widely used mathematical models for damping are introduced

below:

2.2.1 Viscous Damping

The viscous damping force is defined as

Fd = -CX 2.1

where the constant C (of dimension force per unit velocity)

is called the coefficient of viscous damping. This type of

damping occurs in lubricated sliding surfaces, dash-pots,

hydrolic shock-absorbers [43). The minus sign indicates
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that this damping force is always opposite to the direc-

tion of the motion. The work done by damping force,

namely, dissipated energy during one cycle of

harmonic motion, x = Aosinwt, wil be

2n

OCY fA) dx 2  2(UVcyc = JFd dx f C(I)dt = TCAow 2.2

where w is the circular frequency in radians per unit time.

Apparently, dissipated energy due to viscous damping in a

cyclic motion is proportional to the frequency and to thc

square of the amplitude of motion.

2.2.2 Dry or Coulomb Damping

This type of damping occurs in the sliding of dry

surfaces. The damping force during motion is constant and

is given, according to Coulomb's law, by

Fd = -fN 2.3

where N is the normal component of the force upon the sur-

face of contact, and f is the coefficient of dry friction.

Damping induced by the joints is mainly because of dry

damping. And it is known that damping of built-up

structures (i.e. structure made by joining together skins,

strings, frames, etc.) could further be caused by the

effect of the joint [11.
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2.2.3 Material Damping

This kind of damping is also referred to as internal,

hysteresis or structual damping. It is caused by the

internal friction, the viscoelastic behavior of the

material, and the interfacial slip in the material itself.

It is well known that an elastic body which is

repeatedly stressed becomes hot. If an elastic body is

subjected to forced oscillation, a positive work of the

exciting force must be spent to keep the amplitude of the

oscillations constant in time. The reast-i for the heating

of the body and the expenditure of external work is the

internal friction of the material. Although this

explanation can be easily accepted in a qualitative way,

it is more difficult to translate the problem into

mathematical terms.

Three principal hypGtheses have been proposed to

explain the phenomenon of internal friction, i.e., the vis-

cous theory, the hereditary theory, and the hysteresis loop.

Viscous theory. The viscous theory assumes that in

solid bodies, there exist some viscous actions which can

be compared to the viscosity of fluids. These viscosity

effects are assumed to be proportional to the first

time derivative of strain. The coefficient of the

proportionality (constant for each material at constant

temperature) is called the coefficient of viscosity.

Based on this assumption, many mathematical models (sLch

aE Maxwell model, Kelvin-Voiqt model, and three-parameter
9..

N
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models 144, 45]) have been introduced to represent dif-

ferent materials. For the case of Kelvin-Voigt model

under normal deformation, the relationship between stress

a and strain c is expressed by

o = EE + & e 2.4

where E is Young's modulus and & is the coefficient of

viscosity of the material.

Hereditary theory. The hereditary theory attributes

the dissipation of energy due to material damping to the

elastic delay by which the deformation lags behind the

applied force (431. According to this theory, the defor-

mation at a given instant, instead of dependinq only on the

actual applied stress at that time as it would if the

materials followed Hooke's law, depends on all the

stresses previously applied to the elastic body. The

stress-strain relationship is given by

rt
a = EC +J 0(t, T) C(T) dT 2.5

where t is the actural time and T is an instant of time

between t = -- and t = t. The function '?(t, 10 is

called the hereditary kernel or memory function.

Hysteresis qoo. For a material under a cyclic

loading, the stress-strain curve is a closed curve which

is called the hysteresis loop. The physical meaning of
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this hysteresis loop is given in Section 2.3. The area

within the hysteresis loop is proportional to the

dissipated energy. This area, being a material property,

may or may not depend on the frequency. A mathematical

model can be used to explain the energy dissipation, when

this energy dissipation is independent of frequency in a

material loaded by a cyclic force. In this mathematical

model, the damping force is assumed to be proportional to

velocity and inversely proportional to frequency, i.e.

Fd- h k 2.6

If an external force Fe is applied just enough to

balance the damping force and to maintain a simple

harmonic motion, x = Aosinut, then

Fe = Kx + h i 2.7

where Kx represents the elastic force of the system; for

example, a single spring, w is the circular frequency,

A. is the amplitude, and h is the hysteretic damping

constant. The relation- ship between Fe and x is given in

Equation 2.7, and the plot of external force Fe as a

function of displacement is a skewed ellipse, as in

Figure 2.'.

2
x 2 F - Kx 2  .) 2+ e h 2.8Ao hAO
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Fe

X

Figure 2.1: Sketch of Hysteresis Loop

The work done by damping force (dissipated energy) in one

cycle (UD)cyc is

2 r

(UD)cy dd dx (x) dt = 7r h A2

2.9

Thus, the energy dissipated in one cycle is proportional

only to the square of the amplitude. This expression

agrees with the results of experiments of Kimball and

Lovell [5] which indicate that for a large variety of

materials such as metals, glass, rubber and maple wood,

subject to cyclic stress such that the strains remain

below the elastic limit, the internal friction is entirely
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dependent on the rate of strain. Equation 2.9 also agrees

with Lazan's notes (461 on dissipated energy. For example,

at low amplitudes of stress, the dissipated energy is

proportional to the square of the stress amplitude, and the

hysterestic loop is elliptical in form.

Unlike homogeneous materials, fiber reinforced mate-

rials have interfaces between matrix and fiber. When a

fiber reinforced composite is subject to a tensile strain

cycle, the high shear stress may cause the fiber matrix

interface to fail so that energy is dissipated by

friction as the matrix slides over the fivers (471. Damp-

ing is then increased due to interfacial slips between

matrix and fiber. In this study, perfect bonding between

matrix and fiber is assumed; conseqeuntly, interfacial slip

is not considered.

2.3 Types ofDamping Representations

Many different disciplines have been concerned with

damping measurements, and this has further complicated

nomenclature. Confusion has been caused not only by the

"large variety of damping units used, but also by the lack

of unique definition for many well-accepted units. It is,

therefore, desirable to review the various damping units

currently used and to indicate relationships between them.

------------
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2.3.1 Damping Ratio (C)

Figure 2.2 shows a single degree of freedom system

with viscous damping, excited by force F(t).

k c

l°T
F(C)x

Figure 2.2: Sketch of Viscous Damping Model

Its differential equation of motion is found to be

Mx + Cx + Kx = F(t) 2.10

If F(t)=0, one has the homogeneous differential equation

whose solution corresponds physically to that of free-

damped vibration. The general solution to this homogeneous

equation is

-(c/2m)t bt -bt 2.11x =e (cle + c 2 e 21

where

b =((c/2m) 2- k/mI1/2 2.12
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Cl and c 2 are constants to be determined by initial

conditions. In order to have oscillation, one will expect

to have

(c/2m) < k/m 2.13

Apparently, there exists a critical value cc for c,

when (c/2m)2 equals k/rn. Damping ratio [38], C, is

defined as

cc 2.14
cC

where

L

cc (4mk) 2.15

2.3.2 Logarithmic Decrement (S)

A convenient way to determine the amount of damping

present in a system is to measure the rate of decay of

free oscillations. Logarithmic decrement [38] is defined

as the natural logarithm of the ratio of any two

successive amplitudes, as in Figure 2.3, of a free

vibration.

I
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X.

6 =Ln 2.16
xi+1

Figure 2.3: Sketch of Logarithmic Decrement

2.3.3 Loss Tangent (tan 0))

It is well known that polymer behaves as viscoelastic

material, i.e., combining two material properties, one of

which is perfectly elastic, while the second is viscous

fluid [43]. Let such a viscoelastic material be subject

to a sinusoidal stress experiment at frequency w such

that the period 2R/w of oscillation is sufficiently large

as compared tc the transit time of elastic waves through

the specimen that stress and strain can be considered

uniform throughout the test section. Under these condi-

tions, the response to a steady-state sinusoidal stress a

is a steady-state sinusoidal strain c at the same

frequency [441, out of phase by the angle $, e.g.

a = Co sinwt 2.17
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C = Eo sin(wt - fl 2.18

Both the response amplitude and the phase-shift (or phase

angle) P are frequency-dependent, but in the linear range

Co is proportional to a.. The phase relationships are

conveniently shown in the rotating-vector representation of

simple harmonic motion, as in Figt e 2.4.

re "------- -A

0 .-B, o --
E'e 0

Figure 2.4: Rotating-Vector Representation of
Harmonic Motion

The rotating vector OB of magnitude E'ro lags behind

the stress OA by 4 radians. Stress OA may be resolved

into two components, E'eo in phase with strain and E'€o,

w/2 radians out of phase with strain, as in Figure 2.4.

Here E' is the storage modulus and E" is the loss modulus.

The loss tangent tan 0 is defined as

tan 0 = E"/E' 2.19

Some authors call tan P the loss coefficient. The ratio

E"/E' is a measure of the ratio energy loss to energy

stored. For viscoelastic material, the moduli are often

expressed in terms of a complex number, called complex
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modulus. In this study, the superscript * is used to

indicate the complex modulus, for example:

E* = E' + iE" 2.20

where i is J__.

2.3.4 SpcifficDgamng Capacity for Cyclic Loading ('C)

The physical meaning of the hysteresis loop of

Section 2.2 .3 is considered here. Since materials do not

behave in a perfectly elastic manner even at very low

stress [46], inelasticity is always present under all

types of loading, although in many cases extremely precise

measurements are necessary to detect it. Under a cyclic

loading condition, inelastic behaviors lead to energy dis-

sipation. This means that the stress-strain (or load-

deformation) curve is not a single-valued function but

forms a hysteresis loop. Energy is absorbed by the mate-

rial system under cyclic load, and the energy absorbed is

proportional to the area within the hysteresis loop [46],

as in Figure 2.5.
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F

__e_?_X

X

Figure 2.5: Hysteresis Loop of An Inelastic Body

Consequently, another measurement of damping called

spe-'fic damping capacity (461 can be obtained by compar-

ing .e energy dissipated (or absorbed) (UD)cyc of the

syst .... in a cycle with -.,e maximum strain energy stored

(Us)may 1.n the system C .i.-ng that cycle.

=c 2 (UD)cyc/(Us)max 2.21

In Appendix A, viscoelastic material is shown to have such

a hysteresis loop under cyclic loading, and the same

expression for specific damping capacity is obtained. The

difference is that specific damping of viscoelastic

material is also a function of frequency, as reported

in studies [48, 491. This is because the storage and loss

moduli are functions of frequency.
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For small damping, the relationships between those

representations of damping are given in references

(50, 51).

tanO 2C (U DIcyc 2.22
t(1 - (2) ½ nUsmax

I..

I'•
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CHAPTER 3
DAMPING OF UNIDIRECTIONAL FIBER COMPOSITES

3.1 Introduction

The objective of this chapter is to determine theo-

retically the damping of unidirectional fiber reinforced

polymer matrix composites. The major damping mechanism of

such composites is the viscoelastic behavior of the poly-

mer and fibers. The analysis is carried out by first

applying the concepts of balance of force and equal strain

energy on short-fiber composite model to determine the

longitudinal modulus of short-fiber composite. Then the

elementary mechanics approach is used to find the modulus

Ex along the loading direction as a function of the mecha-

nical properties of the fiber and matrix materials. This

is followed by applying the viscoelastic-elastic

correspondence principle [45, 52] to express the mechani-

cal properties of the composite, fiber, and matrix; then

after the real and imaginary parts of complex modulus are

separated, the damping of the composite can be obtained.

23
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3.2 Ddmping Analysis of Unidirectional Fiber Composites

3.2.1 Short-Fiber Composite Model

The short-fiber composite model is composed of a

finite-length fiber and the polymer matrix, as in

Figure 3.1(a).

'.j x s

II

Fiber i X S

a a
(a) (b) (c)

Figure 3.1: Short-Fiber Composite Model

Figure 3.1(c) is the homogeneous material equivalent to

the composite of Figure 3.1(a). Figure 3.1(b) is the

front middle longitudinal section view of Figure 3.1(a),

where d and s are the diameter and the length of fiber,

respectively; D and L are the diameter and the length of

the composite model, respectively; and P is interpreted as

the distance between fiber tips along fiber direction.

The ratio of P to s is defined as R and is interpreted as

the degree of discontinuity. During the derivation of

Young's modulus along the fiber direction, the short-fiber

composite model is treated as if it is composed of two
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materials connectedin series along the fiber direction.

One material which is between sections H and H' is the

mixture of fiber and matrix having length s, while the

other material is just the pure matrix having length P.

As In some other analytical work on short-fiber

composites [23, 31, 32], the results of Cox's shear lag

stress analysis (20] are used in this study. The expres-

sion for elastic stiffness of the discontinuous fiber

composite is derived from the average of fiber stress

based on Cox's fiber stress distribution (in which the

longitudinal fiber stress is a function of position).

ce = Ee=e 11 - cosh[S(s/2-x)]} 3.1
-' L-• •cosh(Os/2)

where x, 6, and Bs/2 are defined in reference [311, and ef

is the strain of the fiber. In this study, the square

packing array of fiber composites is considered; there-

fore, Os/2 can be written, according to reference [31], as

s s ( m 1/2 3.2
2 d Ef Ln -

4 vf

The average fiber stress is

fs/2
- sl2f 0 dx 3.3



26

Substitute Equation 3.1 into Equation 3.3

-f 2i - tanh(3sI3

Of = ef Ef []- s/2 3.4

For th(. composite between 3ections H and H' in Figure

3.1(a,, in order to have static equilibrium, the

total longitudinal force q applied to this composite

must be

q1= a AC = Of Af + or Am 3.5

Therefore,

Oc = ECc c = of Vf + Om Vm 3.6

where Vf and Vm are the fiber volume fraction and matrix

volume fraction within sections Hi and H' separately.

It is assumed that the composite, fiber, and matrix (all

between sections H and H') have the same extensional

Strain e. The longitudinal modulus of material between

sections H and H' can be obtained from Equation 3.6.

Ec = Ef 'f [I - tanh!Ws/2)] + Em V 3.7
frs/2 m_.
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If Vf and Vm are expressed in teims of Vf, Vm, and R, Equa-

tion 3.7 can be rewritten as

Ec - Ef(Vf + VfR) (I - tanh($s/2)j + Em (VM - VfR)

Bs/2 3.8

Alternatively, if the same assumption is used as in conti-

nuous fiber composites is considered, the fiber stress

along longitudinal direction is assumed to be uniform

everywhere in fiber, and the longitudinal modulus of

material between sections H and H' can be obtained by

using rule of mixtures.

Ec = Ef (Vf + VfR) + Em(Vm - Vf R) 3.9

Equations 3.8 and 3.9 show that for continuous fiber com-

posites, the longitudinal Young's modulus obtained by the

rule of mixtures is higher than that obtained by Cox's

analysis. This is because in the rule of mixture

approach, uniform longitudinal fiber stress is assumed,

while in the Cox's approach, uniform longitudinal fiber

stress exists only at the locations far away from the

fiber tips, and this longitudinal fiber stress reduces to

zero at fiber tips. Finite element stress analyses [25,

261 show that the reduction of longi..tudinal fiber stress

around fiber tips does exist; and the magnitude ct this

stress is not zero but finite. So it is hard to say which

approach (rule of mixtures or Cox's analysis) is more
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nearly correct. However, Table 3.1 shows the values of

tanh (Ss/2)/(Ss/ 2) of graphite epoxy and Kevlar epoxy with

Vj being 0.7 or 0.4. This table indicates that the modi-

fication term tanh(Ss/2)/(!s/2) becomes importart when

fiber volume fraction and fiber aspect ratio are both

small. On the other hand, when the fiber volume fraction

is greater than 0.4 and the fiber aspect ratio is greater

than 100, the effect of tanh(Bs/2) (1s/2) could be

neglected.

Table 3.1: Influence of Vj and s/d on tanh (Os/2) (Us/2)

Composite Vf s/d tanh (0s/2)/(Ss/2)

Graphite-epoxy 0.4 5. 0.725
Graphite-epoxy 0.7 5. 0.369
Kevlar-epoxy 0.4 5. 0.610
Graphite-epoxy 0.4 25. 0.180
Graphite-epoxy 0.7 25. 0.074
Xevlar-epoxy 0.4 25. 0.135
Graphite-epoxy 0.4 100. 0.045

Wnen the same external stress a is applied to short-

fiber composite model and to its equivalent homogeneous

materials, the same strain energy density U is presumed

for those two materials (Figure 3.1(a) and Figure 3.1(c))

Ua = Uc 3.10
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and

U a 2 2 -3.110 - 1 P + ! c; s3.1_-
a 2Em L 2 EL

a 2

U 1 a 2 3.12
c 2 EL

where EL is the longitudinal Young's modulus of the homo-

geneous material equivalent to short-fiber composite

model. After Equations 3.11 and 3.12 are substituted in

Equation 3.10, EL can be expressed as

E E

E c m 3.13
L E R + E --1

c 1 R m f+R

where Ec can be obtained by Equation 3.8 or Equation 3.9,

and R is the ratio of P to s. When R equals zero, EL

equals Ec. On the other hand, if R is a very large

number, EL will be very close to Em. Since the fiber

aspect ratio considered in this study is between 25 and

10,000, unless specially mentioned, the modified Cox's

analysis (i.e., Equations 3.8 and 3.13) is used to

anaylize the longitudinal Young's modulus of short-fiber

composite model.
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It should be noted that the continuous fiber compo-

site can be induced either by letting the fiber aspect

ratio be a very large number in the modified Cox's analy-

sis or by letting R be zero in the modified rule of

mixture.

3.2.2. Damping of Aligned Short-Fiber Composites

A typical representative volume element of off-axis,

short-fiber composite is shown in Figure 3.2

a

IJ

Fiber /

Figure 3.2: Representative Volume Element of Off-Axis
Short-Fiber Composites
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For a continuous aligned composite, the off-axis modulus

Ex along the loading direction is given in reference (381

C s48 ( l- vLT) 2 2--
1 cos +s48 + -2 _) sin e cos 6
Ex EL ET LT EL 3.14

where EL and ET represent the moduli along and transverse

to the fiber direction respectively, GLT is the in-plane

shear modulus, and vLT is the major Poisson's ratio.

Equation 3.14 can be easily derived from the elementary

mechanics approach for off-axis continuous fiber

composites. For off-axis aligned short-fiber composites,

one can derive a similar expression for Ex from Equation

3.14 by replacing ELY ET, GLT, and VLT by the correspond-

ing formula for aligned short-fiber composites. The

longitudinal modulus can be obtained from Equations 3.8

and 3.13. The transverse modulus ET, in-plane shear

modulus GLT and the major Poisson's ratio, those material

constants are assumed to be independent of length of

fiber, can be obtained by using the Halpin-Tsai Equation

[531 and the rule of mixtures, i.e.

1 + 2n V

E =E i f 3.15
T m 1- nVf

I + n2V

G -G 2f 3.16
LT m 1 -n 2Vf
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VILT = VfLT Vf +Vm Vm 3.17

where

S(EfT/E) - 1 3.18

1 (EfT/Em) + 2

(G fLT/Gm) -1

2= (GfLT/Gm) + 1

Up to now, all equations presented in this chapter

are derived for elastic material. When a viscoelastic

material is considered, the elastic-viscoelastic

correspondence principle (52] can be used to obtain the

corresponding relationships of viscoelastic material. For

viscoelastic material the basic material properties are

redefined as
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E*L = EL + IE

EfT ET + i EIL

GfLT = GiLT+ i LT

E E= + i E; 3.20

GM* = G; + i G;
G* = G' +i "

m m m

VfLT ' Vi'LT

E* - E' + i E" 3.21x X x

Where the prime quantities indicate the storage moduli or

storage Poisson's, the double prime quartitles indicate

the loss moduli or loss Poisson's ratio, and the i is

defined as TFL. In this research, bulk modulus of epoxy

matrix Km is assumed to be real and Independent of fre-

quency (151. For isotropic epoxy matrix,

K = Em 3.22
_ 1v 2M)
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While the viscoelastic behavior of epoxy is considered,

K Em E; 3.23
M (. 2 V - 1 2v)n

Km~ m [ •

The complex form of vm can be obtained by Equation 3.23

E; + i E"

hand side of Equation 3.24, one will have
[ m 3.24Výi + i V" •I+

Slmilarily, the complex form of shear modulus, G'a+ Ga of

viscoelastic matrix can be expressed as functions ofE,

hand sde i.e.,

E'9

G' + I G" 2( + + I 3m m (+ in 'U 2

3.2

Simiariy, te cmple fom ofsher moulu, G~+ L--o

viscolastc marix an b expesse as unctons f.E;
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The complex form of Os/2 of Equation 3.3, as shown in

Appendix B, is

+G" E' 3.27
2 2 2 4 G( E,Gm EfL

The reason that the imaginary part of fiber Poisson's

ratio is set as zero in the last equation of Equation 3.20

is because first, most fibers are known to be anisotropic

materials; therefore, Equation 3.22 is not true for most

fibers. Secondly, the corresponding term of Em/E' formm
most fibers (i.e., E• /Ei), except Kevlar fiber, is much

less than E"/E' . Due to the lack of the ava-lable data
m m

of transverse damping and shear damping, those two dampings

are assumed to be equal to E" IF
fL fL

It should b- noted that n and nff are treated as

as material properties, and they are defined as

E"
n =E-- 3.28

m

n LfL 3.29

By using Equations -- 25 and 3.28-3.29, the right-hand

side of Equations 3.20, 3.21, and 3.27 can be rewritten as
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Eil + I. Ei - E' (1 + I1. )-E
fL ft t L

Ef' + i E = E' (I + i nf E E -
f; T fT ffT

G'L + i G = Gf( + i nf ) = GT
fLiT + ELTý E;LT( + fLT

E' + i E" = E (1 + i E * 3.30

m m m m m

G@ + i Go = G' (1 + i n GGm inm m m GM --

vI + i1 V" -V + (V .1 =v V*
m m m m im 2 I-

fLT VfLT VfLT

E' + i E =E*
x x x

2 - 2 2 . 2 GM 2

where nGm is defined as

9~ Km G 3.31 -

nGm = 9 Km - Em nm = •- 3.3

From Equation 3.31, it is observed that nGm is higher than

nm. After using Equations 3.20, 3.27, and 3.30, one

can rewrite Equations 3.13 and 3.15-3.17 for viscoelastic

material, as follows
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Et ~(E' + i E;) (E'l + i E;) 33:1. 3.32

(EV + 1. Eý)- + (E; +i E;)
C ~ I C i +R

I + 2n* VfE (E' + i E")1 3.33
T m i I n* V

I f

1 + nVG") f 3.34
LT m m -n2V

2 f

V* = v ' - 2) m
LT (LT Vf + vm V ) + i n (v'm I V 3.35

where

El + i E" = (E + IE + VfR)
c + fL EL) (Vf f

[I tanh(.s/2)] + (Er + IEm)(Vm- VfR)
S s/2 m m3.36

tanh(o s/2) - tanh(es/2)

+ i "Gm f 1 1 3.37

2 2 cosh2 (8s/2)



38

11* ( ~FTh + 2. EiT)/E + i F;) 3.3
1 " EJT + i E T,/(E- + i E;) + 2 3.38

G'T + i GT")/(G' + G)

n= (C LT + i GLT Gm + G;) m 3.39
fLG T +~ I G"hT)/_(Gm + G;) +9 I.

After substitute E*, E*, G*T , and L•T from Equations

3.32-3.35 for EL, ET, GT, and VLT, respectively, and

Ex+iEx for E. into Equation 3.14, one obtains

*4 4 *
1 -cos e + sin 0 + 1 2 LT 2 2E W (_•__W_ 2 )cs2_Tn2

X x EL ET GLT EL

3.40

Damping of the aligned short-fiber com~posite along x

direction, nX, is then determined by

= E; 3.41nX --. El-
x

Equations 3.40 and 3.41 show that material damping and

stiffness of aligned short-fiber composite are functions

of material properties of fiber (i.e., E L E'fT '

VfLT, and nf) and matrix (i.e., E', V, and r, ), fiber

aspect ratio (s/d), fiber volume fraction (Vf), degree of

I
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discontinuity (R), loading direction (0), and packing

geometry of fiber. If the four different kinds of pre-

packed tapes (glass-epoxy, Kevlar-epoxy, graphite-epoxy,

and boron-epoxy) are used to make the fiber composite, the

design variables utilized to analyze the stiffness and

material damping are s/d, e, R, Vf, Ef ({E•L, EfT, GhLT,

"VfLT I " , 'sm}), and Em (1 ý',' n }), i.e.

E= f, (Ef, Em, s/d, e, R, Vf) 3.42

x= f 2 (Ef, Em, s/d, 0, R, Vf) 3.43

A similar approach can be applied to determine damping

along y direction, ny, and stiffness along y direction,

E_.

y•..



CHAPTER 4
DAMPING OF RANDOMLY ORIENTED SHORT-FIBER COMPOSITES

4.1 Introduction

The objective of this chapter is to determine

analytically the material damping of in-plane randomly

oriented short-fiber composites. The analysis is

carried out by using the extension of the short-fiber com-

posite model and part of the results obtained in

Chapter 3. An averaging procedure is first applied to

the six off-axis reduced stiffnesses Qij (i, j = 1, 2, 6)

with respect to the angle e between the fiber orienta-

tion and the applied load. The results of integration

show that in-plane randomly oriented fiber composites

behave like a planar isotropic material. By using the

properties of isotropic materials, Young's and shear

moduli can be obtained as functions of the reduced

stiffnesses Qij (i, j = 1, 2, 6). After the application

of the elastic-viscoelestlc correspondence principle and

separation of the real and imaginary parts of the complex

Young's and shear moduli, material damping is obtained.

40
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4.2 Damping Analysis of In-Plane Randomly Oriented
Short-Fiber Composites

For in-plane randomly oriented short-fiber compo-

sites, no difference caused by different direction paral-

lel to the planes on which fibers are laid. The averaging

procedure i -ne of the approaches which wilI lead to the

isotrop. Therefore, an averaging by integrating the six

moduli of off-axis short-fiber composites with respect to

e from 0=0 to 0=- should be used. Powever, from Equation

3.14 for Ex and similar Equations for Ey, Gxy,' Vxy, mx and

my 038], one finds that it is not convenient to integrate

and obtain the average Ei in closed form in terms of

EL, ET, GLT, and VLT. Instead of integrating the six

engineering moduli, one can integrate the six components

of the off-axis reduced stiffness of the plane stress

case Qij (i, j = 1, 2, 6) and obtain the average

Qjj, i.e.

=j Qij dO i, j = 1, 2, 6 4.1

The expression for Qij (i, j = 1, 2, 6) as a function of 0

can be found in reference [38]. After integrating with

respect to 0 from 0=o to 0=7 and then dividing each of the

result by 1r, one obtains
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3 1
011 (122 • (Q11 + 'Q2 2 ) + (2Q66 + Q1 2 ) 4.2

ý666 (Q11 + Q22) - 4 Q1 2 + 1 Q66 4.3

1 3 144
Q12 = 8 (Q11 + )2 + 4 Q12 - 2 Q66

Q16 a6 6 = 0 4.5

It is easy to show from Equations 4.2-4.4 that the follow-

ing relation exists

Q12 + 2Q66 = Qll 4.6

Therefore, after integration, there are only two inde-

pendent material constants, namely, Qr and Gr"

Qr = Q11 4.7

Gr = 066 4.8

This implies, as expected, that in-plane randomly oriented

short-fiber composites behave as planar isotropic mate-

rials wi h two independent material constants. The

subscript r represents .-andomly oriented short-fiber

composites.

~ tf1.''. A'.&.t .it~t ' ~ %C't %.h - ~ ~< ',. t-C .1.~r S bb .. b-____ .
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For isotropic materials, the following relations

exist

Er 4.9

Gr = - r 4.10
2(1 +r

where v is defined by QI2/Qll. Elimination of v from

Equations 4.9 and 4.10 yields the expression for

Er' the Young's modulus of a randomly oriented short-

fiber composite as a function of Gr and Or'

S= 4 G (1 Gr 4.11
r r 0Qr "•-

Substitution of Equations 4.2, 4.3, 4.7, and 4.8 in Equa-

tion 4.11 yields Er as a function of the four reduced

stiffness Qi1' Q22' Q12 ' and Q6 6.

r 2 [I (Q11 + Q2 2 ) - Q1 2 + 2Q 6 6]

Q[I + Q22 - 2Q 1 2 + 4Q 6 6I-3 (Q 11 + Q22 ) + 2 ( Q 12 + 2Q66)

4.12

Similarly,
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_r 1QlI + Q22) - +1Q2 + 2Q 6 6  4.13

Since Ql1 , Q2 2 ' Q1 2, and Q66 are directly related to the

four basic engineering constants EL, ET, GLT, and vLT

(defined in Equations 3.13, 3.15, 3.16, and 3.17), accord-

ing to Equations 4.12 and 4.13, E and G can be expressedr r

as functions of EL, ET, GLT, and VLT.

Next, as in Section 3.2.2 for aligned short-fiber cont-

posites, according to the elastic-viscoelastic correspond-

ence principle, one may replace •r by E = + i •r ,

by= dr+ i ,EL by E*. ET byF4 %T by G*T

"VLT by vLTT where E. , E* , G*T ,and V*T , are defined in

Equations 3.32-3.35. Atter separation of the real and

imaginary parts, the material damping constants nr and nGr

of in-plane randomly oriented short-fiber composites can

be obtained.

nr 4.14

r-

IGr _ r 4.15
Gr 

-



CHAPTER 5
DAMPING OF LAMINATED FIBER COMPOSITES--

LAMINATED PLATE THEORY APPROACH

5.1 Introduction

In this study, laminated plate theory and an energy

approach ate used to analyze the material damping and

stiffness of symmetrically laminated fiber composites. In

this chapter, we will discuss all analytical work of

laminated plate theory approach, while in Chapter 6 the

energy approach will be presented.

According to laminated plate theory, the constitutive

equations (Equation 5.1) have already been given in refer-

ences [38, 50], in terms of [A], [B], and [D] (0.e. [A]*,

[B]*, and [D]*) matrices. Material damping of laminated

composites can then be derived from the expression of (A],

[B], and (D].

5.2 Damping Analysis of Laminated Fiber Composites

Through Laminated Plate Theory Approach

For a laminated fiber composite plate, as in Figure

5.1, the constitutive equations are given in references [38,

50] as shown in Equation 5.1.

45
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Figure 5.1: Sketch of Laminated Fiber Composite Plate

Nx All A1 2  A1 6  B11  B1 2  B1 6 C;

N y A2 2  A2 6  B1 2  B2 2  B2 6  C;

Nxy A6 6  B1 6  B2 6  B6 6 Y~ y

Mx D11  D1 2  D1 6  kx

My Symm D2 2  D2 6  ky

L Axyj LD 6 6  kx •Y

5.1
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In Equation 5.1, Eý, Ey, and y4 are middle plane strains,
kx, ky and kxy are plate curvatures defined in (38, 50],

and Aij, Bij, and Dij (i, j - 1, 2, 6) are the equivalent

reduced in-plane stiffness, coupling stiffness and

reduced flexure stiffness, respectively. They are expressed

in terms of Qij and total thickness of the plate, h, as

follows:

h/2 n (h-I)
Aij =Qij dz = £. k (hk-hk-1)-

I-h12 k=1 
5.2a

-h/2 '-- dz n 1 12 _h2
Bij Z ijd 7.(Qij) k (hk-hk-1)

-h/2 k=l 5.2b

Dh/2 2 n 3 3l
Z Qij dz I k (hk-hk)

k=1
3-h/2 3

5.2c
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where Oij can be expres3ed in vector form (501

S Ul U2  U3 *-

Q22 Ul -U2  U3

Q12 U4  0 -U 3  cos 2 0

Q66 U5  0 -U 3

1
Q16 0 VU2  U3

0 -U3  cos 4 0

5.3

and

U, (i = 1, 2 . • 5) are defined in [50] as

U1 = (3QII + 3Q 2 2 + 2Q12 + 4Q 6 6)

U2 = (4Q11 - 4Q 2 2)

U3 = 8 (QI +Q22 - 2Q1 2 - 4Q6 6 ) 5.4

U4 = • (Qll + Q2 2 + 6Q 1 2 - 4Q6 61

U5 = (Ql1 + Q2 2 - 2Q 1 2 + 4Q66)

8-
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Qj (i, j 1, 2, 6) are known to be, by references (38,

501,

Q EEL
Q11 =I-vLT vTL

ET

= -VLT VTL

2 vLT ET

= -VLT VTL

Q6 6 =f GLT

and

VvLT ET 5.6
TL EL

where EL, ET, GLT, and VLT are defined in Equations 3.13,

3.15-3.17. Interesting relations should be noted that

Qij (1, j = 1, 2, 6) of Equation 5.3 will be equal to Qij

of Equations 4.2-4.5, providing U2 and U3 are set as zero.

Equation 5.1 can be rewritten in matrix form as

IN [A B] [C

S = 5.7

M B DJ
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For symmetric laminates, the coupling stiffness matrix B

is a zero matrix, and Equations 5.1 and 5.7 can be

uncoupled as

Nx All A 1 2  A1 6  Cx

N A1 2  A2 2  A2b 0 5.8a

A1 16  A2 6  A 66  -Y

or

{I} [ IA] {•°} 5.8b

and

Mx ýDII D1 2  D1 6" kx

M1y D12 D22 D26 Jky 5.9a

MxY, D16  D2 6  D66 kxy.

or

fMI = (D) {k} 5.9b

From Equation 5.8a and the definition of Aij, one can

express in-plane moduli Eij (i, j = 1, 2, 6) as

E 1 1 5.10
iJ A 1  h

ij
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where h is the total thickness of laminated composite and

Ai. are the elements of the inverse of matarix [A1 j], and
-1

A-ý are determined by the following system of equations.

S-1 -1 -1
A11 A1 2 A1 6  A1 1  A1 2  A1 6  1 0 0

-1 -1 -1
A1 2 A2 2  A2 6  A1 2  A2 2  A2 6  0 1 0

-1 -1 -1
A1 6 A2 6  A66J A1 6  A2 6  A6 6  0 0 1

According to elastic-viscoelastic correspondence

principle, when the viscoelastic behaviors of fiber

composites are considered the elastic material constants

EL, ET, GLT, and VLT (defined in Equations 3.13, 3.15-3.17)

should be replaced by the corresponding complex moduli,

respectively. Consequently, the complex form of Equations

5.8 and 5.9 can be written as

Nx All A1 2  A1 6  j

A A 5.12ay 2 A2 2  A2 6  c5

A1 6  A2 6  A66 y"'Y'

or



52

{N } [A * {5°} 5.12b

M MD * D6 k

M Y DI2 D22 D26 k y 5.13a

Mxy L D16  D2 6  D6 6  kxy

or

{M I - [D I {kI 5.13b

The corresponding complex form of in-plane complex moduli.

Eij Can hP s:,pnoe~A Ac

Eij - -Eij + iEij 5.14

(A1 j)

* -1

where (Aij) is the element in the ith row and jth column

of the inverse of matrix [A~j].

The in-plane material damping inlj and f.,uLare

material damping Fnij are defined as follows:

IE
n = 4 i, j = 1, 2, 6 5.15

ij El
ii

"I±

.1/
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F Dii i, j - 1, 2, 6 5.16
F ij

For the same kind of fiber composite, the result

obtained by Equation 5.15 for sixteen plies of unidirec-

tional laminated composite is same as that obtained by

Equation 3.41 for laminar composite with the same

off-axis angle e. This indicat.-s that the approach

presented in this chapter is correct, although it may not

be convenient because the inverse of a complex matrix is

involved.



CHAPTER 6
DAMPING OF LAMINATED FIBER COMPOSITES--ENERGY APPROACH

6.1 Introduction

The drawback of damping analysis using laminated

plate theory approach is that it does not include the

effect cf interlaminar stresses (the stresses at the

interfaces of laminated composites). It has been shown in

study [54] that even when an in-plane uniform tension load

is applied to the laminated composites, there do exist

appreciable interlaminar stresses around the free edges.

In this chapter, an energy approach in conjunction

with a three-dimensional finite-element method (55, 56] is

used to analyze the material damping under certain loading

and boundary conditions. It is believed that this model

represents a more realistic approach by including the

energy dissipated at the interfaces. By using this

approach, we improve the approach from a two-dimensional,

classical, laminated plate theory to a three-dimensional

elasticity theory.

54
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6.2 Damp-q Anavsis of Laminated Fiber Composites
Through Energy Approach

The damping of laminated materials in the first mode

vibration is determined as

n

2 (qUD)cyc
n q=1 6.1

n
Z 2n qUs

q= q

where n is the total number of the plies, (qUD)cyc is the

energy dissipated in the qth layer during a cycle, and qtjs

is the maximum strain energy stored in the qth layer.

Detailed expressions of (qUD)cyc and qUs are given in

Appendix A in which the energy expressions for a visco-

elastic material given in reference [57] are used

The analytical expression of the maximum strain

energy Us for an elastic body is

Us Cjk Ckd7 6.2

(j, k = 1, 2 . . 6)

where ej are the maximum strains, and Cik are the moduli

of the elastic body.

The expressions of Cjk (j, k = 1, 2 . . . 6) for

orthotropic elastic material are given by Jones [581;

here k and j axes are material principal axes. In this

study, each layer of fiber composite is considered to be
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transversely isotropic material. Therefore, as presented

in Appendix B.1, the moduli of mth layer fiber composite

could be defined as functions

(Cjk)m = f (EL , EI GLT I VLT I vTT')m 6.3

where EL , ET , GLT , and VLT are given in Section 3.1 for

short-fiber composites, and VTT, is assumed equal to Vm"

An analytical expression for vTT' is available in the

literature [38], but the assumption that VTT, = "m' is

believed to be accurate enough in our analysis. According

to the elastic-viscoelastic correspondence principle, when

the viscoelastic behaviors of the body are considered, EL,
* * * * -

ET, GLTI VLT' vTT' should be replaced by EL, ET, GLT' VLT'

and vTT• respectively. For example,

VTL EL
C1 2 = vTL vLT

changes into

(TL + ivTL) (EL + i LL)+ W-1 6.5
TL TvL LT LT

or

C1 2 = c02 + i C" 1 2 6.6
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After separating the real and imaginary parts and using

matrix rotation (if the material principal axes do not

coincide with the global axes), the complex moduli C*

with respect to the global axes (i.e., x, y, and z axes)

of the kth layer of fiber composites are then obtained in

the form

(C Ik = CC 'k + (Cilk 6.7

where C' are storage moduli, and C" are loss moduli. All

three matrices are symmetric matrices.

The storage energy qUs and the dissipated energy

during acycle ( s! ) in th. ath layer of laminated• q- s "cyc .. .. . -

composites can be expressed as

qUs 2 'j Cjk Ck dv 6.8

Vq

and

(qUD)cyc = C •j ! k ck dv 6.9

Jv-

Vq

correspondingly. Consequently, the material damping of

a n layers laminated composite in the first mode vibration
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z I l} (1 c dv
q=1 fVq 6.10
n --
z . {ej} [a,] lei dv

where strain field fei depends on the loading and boundary

conditions, and the strain field would be determined in

this study through a three-dimensional finite element

method.

From Equation 6.10, one may thus arrive that even a

highly dissipative modulus cannot contribute significantly

to the total loss factor n, if it's associated strain (or

stress) does not participate considerably in the total

stored energy.

The procedures taken in energy approach are briefly

described as follows:

Step 1:

As in the laminated theory approach, the elastic

solution is first sought in energy approach. The

equation of motion of an elastic body in static case can

be derived from the principle of stationary potential

energy given in reference [591.

6(-We) = 0 6.11

where U and We are the strain energy and the work done by

external forces, respectively.
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Step 2:

After the assumed displacement function (as a

function of nodal displacement q) is substituted into

Equation 6.11, the equations of motion can be expressed as

a system of equations (details are given in Appendix B.2).

[iq} = {f} 6.12

where [ki is the stiffness matrix, and {f} is the nodal

forces.

Step 3:

After the displacement field is determined by sub-

stituting the solution of Equation 6.12 into the assumed

displacement function, the strain field jc} of the elastic

body could be obtained through displacement-strain

relations.

Step 4_:
Once the strain field of an elastic body is known, the

material damping of a viscoelastic body under the same

loading and boundary conditions can be determined by

Equation 6.10.

In general, we can apply either uniform normal and
uniform shear forces (Nx, Ny, or Nxy) at edges x (or y) =

constant or apply uniform normal and uniform twisting

moments at x (or y) = constant. In the former cases, we
obtain in-plane normal and shear damping (In,, , 6 6;

and in the latter cases, we obtain flexural normal and
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twisting damping VFll, Fn66). Only the case of uniform

Nx applied at x = constant will be presented for

different symmetric cross-ply laminates in Chapter 9.

Other loading conditions can also be accommodated in this

approach.



CHAPTER 7

EXPERIMENTAL MEASUREMENT OF DAMPING

7.1 Introduction

Free vibration decay (91, band-width method [91,

resonant-dwell method [60], forced-vibration techniques

(61], and impulse techniques [62, 63, 641 are the very

popular experimental techniques used to measure the

material damping. All of these tests are subject to the

air drag [65, 66], if the tests are not conducted under a

vacuum condition. in th!i s,,uy, An ironved imniIqp1

technique approach [64] is utilized to measure the

material damping.

The impulse technique consists of the application of

a force pulse at a point on the test structure and the

measurement of the response at another point. The input

force and response signal are digitally processed by the

analyzer to form the frequency response function or

transfer function. Damping and natural frequencies

can then be extracted from the output of the analyzer.

All measures are performed using a digital signal process-

ing technique. It involves filtering and sampling the

input wave forms. The sampling process converts a

voltage (at a certain point in time) into a numerical

representation.

61
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These numbers are then processed digitally to

produce the various calculations performed by the

analyzer. The primary output from the Fourier analyzer

is the frequency response function, which is a measure of

systew's characteristics. The analyzer also calculates

the coherence function, which ranges from 0.0 to 1.0. The

larger the potential measurement noise or the system non-

linearity, the lower the coherence function will be [67].

A coherence value of unity indicates that the output is

completely related to the input. Thus, the coherence

function used here is a measure of the "quality" of the

data.

7.2 Appara tu s

The composite plates or beams are fixed by two alumi-

num blocks at one end. A non-contact probe (KD-2310-3U,

Kaman Science Corporation, Colorado Springs, Colorado),

known as a motion transducer, is located about 1.5 mm

below the tip of each specimen. This motion transducer

operates under the principle of eddy current. An aluminum

foil target of diameter 20 mm is cemented underneath the

tip of the specimen. A force transducer is mounted to the

head of the impulse hammer (Model K291A, Piezotronics,

Inc., New York), to measure the force input to the speci-

men. The other tip of the hammer is connected to the

fixed spring so that the magnitude, location, and the

dwelling time of the impact load can be controlled. To
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improve the coherence, an octave filter (4302 dual 24db,

Ithaco, Inc., New York), which is connected to the force

transducer at the hammer tip on one end and to the Fast

Fourier Analyzer (FTT, Model 5420, Hewlett Packard) on the

other end, is used to magnify the input signal 100 times.

The impact point is near the stiffer portion of the speci-

men. The excitation and response signals are fed into thej FFT analyzer, which displays the frequency response func-

tion and coherence function. Each frequency response and

each coherence frunction are based on a statistical analy-I sis of an ensemble of six tests. A schematic drawing of

the experimental set-up is shown in Figure 7.1.

The frequency response function is a complex valued

function. A typical experiimental display of the real and

imaginary parts of the frequency response function for a

graphite-epoxy composite, according to reference (64], is

shown in Figure 7.2 and an enlarged schematic drawing of

real part of frequency response function is shown in

Figure 7.3. As prescribed in references [62, 63, 64], the

p-ýak of the imaginary part deteimines the resonant fre-

quency, and then from the corresponding real part (see

Figure 7.3) the material darping (loss factcr, ri) can be

calculated by

'f2f . 7.1

(fa/b i+ 1
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In using the impulse technique to measure the mate-

rial damping, following precautions, as reported in study

(64], must be taken.

1. In order to improve the accuracy of experimental data

of damping associated with a particular mode of

vibration, the values of natural frequency within the

frequency range of interest (say 0 to 1,600 Hz) are

first approximately determined. Then a zooming

technique to increase the resolution of the response

in the neighborhood of this particular frequency is

used.

2. It is necessary to avoid measurement of response near

a nodal point for the modes to be tested. Such meas-

urements would consist primarily of noise, since the

actural response is very small near nodal points.

3. The amplitude of the vibration must be kept below the

thickness of the specimen to ensure that air damping

(air drag) is negligible, since the air damping is

linearly proportional to the amplitude-to-thickness

ratio of the beam specimen (661.

4. It is important to optimize the Analog to Digital

Converter (ADC) range setting on an FFT analyzer

before making a measurement, since an optimized ADC

range set will increase resolution in the digLtizing

process [351.

Recently, Suarez and Gibson [35, 36], did some

experiments on material damping of short-fiber composite



65

through impulse hammer technique. Some of those experi-

mental results for unidirectional short-fiber composites

presented in this chaptet are compared with the analytical

results.
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Figure 7.3: Enlarged Schematic Drawing of Real Part of
Frequency Response Function



CHAPTER 8
OPTIMIZATION OF DAMPING AND SPECIFIC STIFFNESS

FOR FIBER COMPOSITES

8.1 Introduction

Plunkett and Lee (19] pointed out that maximum damp-

ing can be obtained through properly choosing the length

and spacing of the constraining layers. Those layers are

used to constrain the viscoelastic layer (or coating) on

the structure surface. In the study presented here, the

optimizat-ion o~f damping is bDarcdl on the Com'posite ma terial

itself (i.e., choosing the proper fiber length, fiber

direction, the longitudinal distance between fiber tips,

etc.). It is known that high damping can reduce the

displacement at and near the resonant frequencies, while

high stiffness can further reduce the displacement at

other frequencies. The best way to optimize both damping

and stiffness is to keep them as high as possible. Unfor-

tunately, there exists a general trend that higher damping

is mostly coupled with low stiffness and vice versa.

Therefore, the idea of the optimization in this study is

to try to increase damping without sacrificing the

stiffness too much.

From the formulations presented in previous chap-

ters, one can see the complication contained in damping

69
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analysis. It will be a simplier approach for the optimi-

zation analysis if no derivative is needed. Consequently.

the so-called Sequential Simplex Method [68, 691 has been

selected to analy7e the optimization.

8.2 Brief Introduction to Sequential Simolex Method

The sequential Simplex Method [68, 69] takes a regu-

lar geometric figure (known as a simplex) as a base.

Thus, in two dimensions (i.'., two-design variables), one

should choose an equilateral triangle; and inr three dimen-

sions (i.e., three-design variables), one should choose a

tetrahedron.

Obser-ations !experiments) are located so that the

objective functior is evaluated at the points formed by

vertices of thu geometri. figure. One vertex is then

re - ed as being inferior in value to the others. The

ral direction of search may then be taken in a direr-

z.y from this worst point, the direction being

c o ,- so that the movement passes through the center of

gravity of the remaining points. A new point is then

selected along this direction so as to preserve the geome-

tric shape nf the figure, and the function is evaluated

anew at this point. The method proceeds with this process

of vertex rejection and regeneratior until the figure

'st"addles the optimum. When no subsequent moves would

lead to furthe'r improvement, the lust few geometric

figures are essentially repeated. There are three ziules

F
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that govern the whole procedure of this method. These

rules are explained in the two-dimensional case as

fol lows -

1. Take the point to be rejected where the worst value

of the objective function is obtained, and replace it

by its reflection in the opposite side of the tri-

angle. See Figure 8.1, where point B is replaced by

point D.

2. No return can be made to points which have just been

left; see Figure 8.2, where point A is replaced by

point D. If point D is still the wcrst point of

triangle BCD, then point B is replaced by point E.

3. Tf the best valued vertex remains unchanged for more

than M iterations, then the simplex size is reduced

by, for example, halving the distance of all other

vertices from that vertex. The next stage can then

sra.-t. For example, as in Figure 8.3, point C is

sequentially repeated in five triangles ABC, BDC,

DEC, EFC, and FGC; and after the size of the fifth

triangle FGC is reduced to triangle F'G'C, the ru'- I

is applied at the new triangel F'G'C.

The magnitude of M depends on the number of

variables. Spendley [68] suggested that

M = 1.65n. + 0.05 n 2 8.1
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where n is the total number of design variables. The

search can finally be stopped when the simplex is small

enough to locate the optimum adequately.

It should be noted that Rule I and Rule 2 force the

simplexes to circle continuously about an indicated opti-

mum, rather than oscillate over a limited range such as a

ridge (see Figure 8.2). If one ensures that at any point

violating a constraint, a suffic.ently large negative

value (or positive value, if one is maximizing) is set for

the response at such a point, the system of simplexes will

then move along rather than cross the constraints.

The advantages of this method ai-e as follows:

1. It is easy to apply.

2. It is useful when analytical or numerical

derivatives of the objective function are not

available.

The disadvantage of this method is that it could not

guarantee that the global optimum design is obtained.

The-efore, several different initial locations (designs)

should be considered to get global optimization.
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x 2 B D
•1_

Figure 8.1: Rule 1 of Sequential Simplex method

x2

Figure 8.2: Rule 2 of Sequential Simplex method
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X2

x1

Figure 8.3: Rule 3 of Sequential Simplex method

8.3 Mathematical Formulation of Desig~n Problems

Energy approach and laminated plate theory approach

are both utilized in damping analysis. The main advantage

of the energy approach over the laminated plate theory

approach is that the interlaminar stresses are included,

The disadvantage of the energy approach is that it takes

much more computer time than the laminated plate theory

approach does. The influence of interlaminar stresses

can be neglected, if the thickness of each group of lami-

nated composite is thin (a detailed discussion is given

in Section 9.5). Then laminated plate theory approach

for• damping analysis is a good way for the optimization

analysis for thin structures.
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Generally speaking, the design variables of continu-

ous or discontinuous fiber composites include fiber volume

fraction Vf, fiber moduli Ef, fiber aspect ratio s/d, the

longitudinal distance between fiber tips p, and fiber

orientation angle 6 for certain special stacking sequence.

Among those six variables, only fiber aspect ratio s/d and

fiber tip longitudinal distance p are treated as the

design variables in the optimization analysis. Since

orthotropic materials are utilized in the optimization

analysis, the fiber direction 6 is kept as certain con-

stants. The fiber volume fraction is also set as a

constant (0.65) in this study, since the fiber composites

are made from prepreg tape. Stacking sequence is fixed

and most of this study is concentrated on graphite-epoxy,

Kevlar-epoxy and the hybrid of those two composite

materials, so that only two sets of fiber moduli are

cons ide red.

Two different cases are considered in optimization

analysis:

Case one is to optimize the specific stiffness and

material damping of an orthotropic square plate simply

supported on all four sides under free vibration.

The equation of motion for this case is

DIll W xxx + 2 (D1 2 • 2D6 6 ) Wxxyy + D22Wyyyy = PW tt

8.2

VQ
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where the Dij are derived from laminated plate theory, and

W is the flexural deformation. Let

W = Amn Fm (x) Hn (y) T(t) 8.3

By separation of variables, the form (8.4) is obtained for

T(t); while Fm (x) and Hn (y) satisfy Equation 8.5

T(t) = e (i --- )ý t k = 1, 2, 3 .1 8.4

(iV) m(iV)D1 1 Fm Hn + 1+ 2D 6 6 ) F!P + D2 2

X= kFmHn 5

;• 8 .S
II

where Xk is the constant to be determined, and i is

in Equation 8.4.

In accordance with the simple supoort bcundary

conditions, F. and Hn functions can be assumed as

FmlX) = sin m_.yy 8.6a

H (Y) sin -- 6 - 8.7

I
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where a and b are the lengths of the edges along x and y

directions, respectively.

By substitutinq Equations 8.6 and 8.7 into Equation

8.5, one obtains

44 4 2n2 4 n 4 v-4
Dl--T- + 2(D12 + 2D 6 6 ) 2ab + D22" -- k

a a b8.8

Letting b=a for a square plate and considering ornly

the first mode of vibration (i.e., m=n=l), one can

obtain X1 as

4

1" 1 1  '"1•'12 + 4u 6 6 + L)22) 0.9
a

The natural circular frequency of the first mode, w!, is

defined as

W, P 1)k 8.10

Then the first mode soltition of Equation 8.2 is

W = a1 1 sin x-- sin ! 8.11
a a

----------
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If the viscoelastic behavior of the materials is

onn

p=- 11I 12 D66 + 22)
a

After separating the real and imaginary parts and

neglecting the higher-order terms of the binomial

expansion of the quantity on the right-hand side in

Equation 8.12, the following expression is obtained.

W. W + i ulý 8.1.3

* where

(-oi + + 4D' + D 8.14

1 • -~ •[ D; •
a

p DT, + 2D[2 + 4D66 * 2 +'1)

Hence, for viscoelastic material, Equation 8.11 should be

rewritten as

I---

'U__
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W - (a,, sin L-- sin E-- eI ) e-It 8.16

W ~ a a

Equation 8.16 is similar to the mathematical model of

logarithmic decrement (421, and the logarithmic decrement

4 can be approximated by

WI

Wi 1
6 - 2-,f 8.17

Wi

for light damping, i.e. when wj/w' < <1.

By using Equation 2.22, the loss factor o] thiL

system is then determined as

--- + 4D- +

-r Df1 2Dj2  66 2 8.18

The value of Ain depends on the stiffness. Hiigh

stiffness reduces the deflection at resonance; the

material damping can further reduce the displacement at

resonance. Gibson (61] shows that flexural vibration for

a double cantilever beam under for~ced vibration at

resonant frequency depends inversely on the product of

material damping, area moment of inertia of cross section

and Young's modulus. It should be noted that his result

is based on the equation of motion for free vibration and
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the boundary conditions of forced vibration. For the case

considered here, the product of the area moment of inertia

and Young's modulus corresponds to the generalized

stiffness D, which is defined as

D = D' + i D" 8.19

f'= D' + 2Di2 + I4D' + D"2 8.20

D Di' + 2D 2 + 4D; 6 + 22 8.21

Equation 8.18 can be rewritten as

n = D"/5' 8.22

In order to have small resonant deformation, a high

value of the product of stiffness and material damping is

required. But high specific stiffness is the major pro-

perty of fiber composites to be widely used in space

vehicle and aircraft. Therefore, the mathematical formu-

lation of optimization on damping and specific stiffness

is to seek the maximum value of the objective function

fl (p/d, s/d) 8.23

i 
A
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of two variables p/d and s/d, wherc f1 is assumed in the form

f, (p/d, s/d) = T, - + T2

P--o 8.24

or
OPO

S(p/d s/d) (TI + T2 8.25
1P FG 2 T6

The ranges for design variables p/d and s/d are

0 < o/d ( 0.05 s/d 8.2

25 < s/d < 10000 8.27

Where TI and T2 are wieghting constants, %m is the damping value of

epoxy, p is the density of designed composite, 6'and n

and n of design composite are defined in equations 8.20 and 8.22,

respectively, and 6b and Po are the corresponding values of D11 and

density of unidirectional continuous graphite reinforced epoxy having

the same thickness and fiber volume fraction. If high specific stiffness

is important in structures, T could be chosen as a high value.

1M
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Alternatively, if small resonant deformation is the major

consideration, T 2 should be a high value.

Case two is to optimize the specific stiffness and

material damping of an orthotropic square plate clamped on

all four sides under free vibration.

The equation of motion is just the same as Equation

8.2. The first mode solution is assumed, according

to reference [701

W = All F(x) H(y) T(t) 8.28

where

F(x) = B1 cos Xix - R1 cosh Xix + sin Xlx - sinh Xlx

8.25

H(y) = 81 cos Xly - 61 cosh Xly + sin Xly - sinh Xly

8.30

sin XIa- sinh a8.31
cos XIa + coshT A_:

and XI is the constant to be determined.

The natural frequency of firbt mode vibration of a

clamped square plate was given in reference [701 as

2

7! 15.4 +.52D +4i -~- • [5o14DI . D2 + 4D 6 6 ) + 5.14D2 2 1
a

8.32
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By a similar approach to that prescribed in case one, one

will obtain the loss factor of the system for case two as

5.14D"1  + 1.55 (2D!2+ 4D 6 3 + 5.14Do2  8.--

n:;11 12 66.22

The mathematical formulation of optimization for this

case is to seek the maximum value of the objective

function

f 2 (p/dI s/d) 8.34

E of two variables p/d and s/d, where f2 is defined in

Equation 8.37

The ranges of design variables are

0 1 p/d S 0.05 s/d 8.35

25 S s/d S 10000 8.36

where

f 2  (P. ' s/d) - T, + T2

0 0o---= • "nm -
8.37

and
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= 5.14DI + 1.S55(2D 2 + 4D• 6 ) + 5.14D 2  8.38

S.14Dil + 1.S5(2Do 2 + 4Do 6 ) + 5.14Do 2  8.39

n = D"ID' 8,40

V.



CHAPTER 9
RESULTS AND CONCLUSIONS

9.1 Preliminary Remarks

The damping analyses presented in Chapters 3 to 6 are

applicable to all kinds of fiber composites, including

continuous fiber composites, discontinuous fiber compo-

sites, symmetrically or unsymmetrically laminated or lami-

nar composites, randomly oriented fiber composites, etc.

The optimization analysis on damping and specific stiff-

ness presented in Chapter 8 ib ba...eu on oi-thotropic

material. However, a similar approach is applicable for

more general anisotropic materials. Since most widely-

and practically-used fiber composites are symmetrically

laminated fiber composites, the numerical analysis of

this study is concentrated on certain kinds of symmetri-

cally laminated fiber composites, unidirectional laminar

composites, and in-plane randomly oriented short-fiber

composites.

As mentioned before (see Chapters 3 and 5), damping

is defined as (or D"/Dý). Since both Ex and E"

(or Dý and D") are functions of Ef, Em, s/d, 0, P (the

longitudinal distance between fiber tips), Vf and .lf, etc.,

the variations of nx and Ex (or D') may not follow the

same pattern. Consequently, in the numerical results,

85
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three dependent variables (ioe., nx, E', and E;) are dis-

cussed in laminar composites, while more dependent

variables are involved in other composites. Among the

independent variables, most interest is focused on Ef, Em,

s/d, and 0. P is treated as an independeat variable only

for optimization, and Vf is set as a constant in most

cases.

The numerical results presented in this chapter are

based on the following assumptions:

I. The matrix epoxy behaves as a linear, isotropic,

viscoelastic material (15].

2. All fibers are also linear viscoelastic materials, and

damping of fibers is independent of direction.

3. The dependence of modulus on frequency is not

considered at the present time.

9.2 Damaping and Stiffness of Unidirectional

Fiber Composites

The numerical results of damping and stiffness analy-

sis presented in Chapter 3 are discussed in this section.

It should be noted that the modified Cox's model

(i.e. Equations 3.8 and 3.13) is used to calculate the

longitudinal modulus of composite materials.

Figures 9.1, 9.2, and 9.3 present the nondimensional

plots of Ex/Em , E- IF, and ix/nm of graphite !_poxy

composite as functions of fiber aspect ratio s/d, using 0

4 " . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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"(the angle between fiber direction and loading direction)

Sas parameter. For small angle, say 0<10( , the storage

"modulus sharply increases as fiber aspect ratio increases;

the loss modulus reaches its maximum around s/d=130 and

then reduces as s/d increases, while damping apparently

decreases as s/d increases. Comparing 0' curves with the

300 curves in those drawings, one can notice that when

0=00 low damping at large s/d is caused mainly by high

storage modulus. Comparing the 600 curves with the 90'"

curves in those drawings, it is recognized that for large

angles, the differences in loss moduli have more influence

on damping. Alternatively, Figures 9.4, 9.5, and 9.6 show

the nondimensional plots of • /Ei , Ex /E" , and rx/rm of

graphite epoxy composites as functions of 0, using s/d as

parameter. It is clearly observed that t1-. shorter the

fiber, the stronger is the dependence of E'/E E , /E.

and nx/nm on s/d for small angles, say 0<10. When 0ý45,

there is not any change of F/E4 , Ex/Em, and Tnx/nm

caused by changing s/d. In addition, Figure 9.5 shows

that the maximum value of Eý/E occurred between 0=0°

and 0=15* for fiber aspect ratio ranging from 25 to 10000.

Similar properties of unidirectional boron epoxy

w composite and glass epoxy composites are observed. But,

for 0=0, the maximum values of Ex/Em occur around s/d=500

and s/d=50 for boron epoxy composite and glass epoxy

composite, rest :ctively. Also, the damping of boron epoxy

composite is, in general, higher than that of graphite"4'"[

"N• %
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epoxy composite. This is because boron itself has higher

damping than graphite does.

The corresponding drawings of Figures 9.1, 9.2, and 9.3

for unidirectional Kevlar epoxy composite are given in

Figures 9.7, 9.8, and 9.9, respectively. It i3 observed

that Keviar epoxy composite has the highest material damp-

ing among those four kinds of composite. This is due to

the fact that Kevlar (aramid) is a kind of polymer which

usv.lly has high damping. It is interesting to notice

that Ex /Em of Kevlar epoxy composite monotonically

increases with respect to s/d when 0=00. All other proper-

ties of Kevlar epoxy composite are similar to those of

graphite epoxy composite.

Figure 9.10 presents the plots of E!/Em, Ei/Em, and

TIxnm of Keviar epoxy composite as functions of 0 with

s/d=100. This figure shows that high damping of such

material is induced by the fact that the values of Eý/E

and Ex /E" are very close. The damping of Kevlar epoxy

composite is inserisitive to angle change because the

reduction rates of EVlE; and ExlZm are very close. Figure

9.11 shows the plots of Fý/Er and Ex/E , and Tx'/m of

Kevlar epoxy composite and graphite ePoxv composite as

functions of 0, while s/d is kept as 100. This suggests

idea that if a hybrid composite (graphite epoxy and Kevlar

epoxy composite) is made, damping of this hybrid composite

will be higher than that of graphite composite, while the
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stiffness of the hybrid composite will be greater than that

of Kevlar epoxy composite.

"Figure 9.12 presents EI/Eý of oraphite epoxy composite

as function of 0 for different fiber volume fractions Vf,

when s/d=100. Differences in caused by different

volume fractions decreases when angle increases. It is

also observed that an apparent reduction in I'/qoccurs

when angle increases from 0° to 150. Figure 9.13 exhibits

the plots of nx /m for graphite npoxy composite versus e

for different fiber volume fractions, when s/d=100. The

peak value of damping moves from about 50* to 300 when the

volume fraction changes from 0.1 to 0.6.

Three-dimensional plots usinq E_' and n, as vertical

axis, and s/d and 0 as two base axes of Kevlar epoxy

composites are given in Figures 9.14 and 9.15,

respectively. The associated contour curves are presented

in Figures 9.16 and 9.17.

4m
9.3 Dampinq and Stiffness of Randomly Oriented---

Short-Fiber Composites

Figure 9.18 gives the nondimensional plots of nr/nm,A-

EVEm, and E'r/E"mof glass epoxy composite as functions of

s/d. It is observed that damping reaches its maximum value

at small values of s/d and decreases as s/d increases. The

storage modulus F4/Eý monotonically increases as s/d

increases. However, loss modulus Er/Em almost remains

unchanged. In Figures 9.19 and 9.20, nondimensional plots

of nr/im, E'r/Ei and E;Ej for graphite epoxy composite

. . . .,*' % I I I I I
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and Keviar epoxy composite are presented separately. The

variations of nr/nm and Er/Em for Kevlar epoxy composite

or graphite epoxy composite are similar to those of glass

epoxy composite. But, for Kevlar epoxy composite, E1 /F•

increases as s/d increases, while graphite epoxy

composite, Er/Em has its maximum value around s/d=120.

Figures 9.21, 9.22 and 9.23 show similar plots of nGr/nGm,

Gr/CI/ , and C/Gq as functions of s/d for glass epoxy

composite, graphite epoxy composite, and Kevlar epoxy

composite, respectively. Variations of nGr/T1Gm, G'r/I

and Gr/G" are almost the same as those of flr/nm, Er/Em,

and Er/Em of corresponding composite, respectively.

Figure 9.24 shows the nondimensional plots of rr/nm

as function of fiber volume fraction Vf, using s/d as

parameter. It is observed that nr/n'r decreases as Vf

increases for small s/d as well as for large s/d.

Three-dimensional plots, using 14 and qr as vertical

axis, and Ef and s/d as two base axes, of four kinds of

fiber composite are given in Figures 9.25 in 9.26, sepa-

rately. The associated contour curves are presented in

Figures 9.27 and 9.28.

9.4 Damping and Stffness of Laminated Composite�

Laminated Plate Theory A_1•roach

The numerical results of the damping and stiffness

analysis described in Chapter 5 are presented in this

section. Five types of lamination (quasi-isotropic

lamination, angle ply lamination, cross ply lamination,
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unidirectional lamination, and a special kind of lamination

[On/-e4n]s) of graphite Epoxy composites are considered in

numerical exampl-s.

Figure 9.29 exhibits nondimensional plots of Dji and

Fqll (flexural normal damping) for [02/902/452/-452]s,

(452/02/-452/902]s, and [452/-4 2/902/02]s as functions of

s/d. It should be noted that all those three kinds of

lamination have the same values of in-plane longitudinal

stiffness ANi and in-plane longitudinal damping Till. But

Figure 9.29 shows, as expected, that for the same s/d,

[0 2/ 9 02/4 5 2/-452 1 s has the highest value of Dil and the

lowest value of Fqll, [452/-452/902/02], has the lowest

value of D11 and the highest value of Fnll, while [452/02/

-452/902]s has almost the average values of qI and of

Fn1l of the other two kinds of lamination. Alternatively,

Figure 9.30 shows the nondimensional plots of D46 and Fn66

(twisting damping) for those three kinds of lamination as

functions of s/d. In this drawing for same s/d, [02/902/

452/-452]s has the lowest value of r6 and the highest

value of Fq66, (452/-452/02/902]s has the highest value of

D96 and the lowest value of Fn66, and [452/02/-452/902]s

still remains around the average values of those other two

kinds of lamination. Figures 9.29 and 9.30 actually show

us how to design the quasi-isotropic laminated plate for

either maximum damping or maximum stiffness purpose.

Figures 9.31 and 9.32 show the nondimensional plots of

Eji and In,, (in-plane longitudinal damping) of angle ply
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laminated graphite epoxy composite as function of 0, usinc,

s/d as a parameter. Ej, increases with s/d for small

angles, say 0<200. The variation of Ej, with s/d reduces

as 0 increases, Lnd very small differences exist for 0>600.

The In,, distinctively decreases as s/d increases for

small angles (say. e<300), while the variation of till

with s/d reduces as 0 increases. Figures 9.31 and 9.32

are comparable to Figures 9.4 and 9.6 correspondingly. The

reduction in In,, (or the increment in F'l) of angle ply

laminated composite is not as sharp as that of unidirec-

tional composite, when s/d is increased and the angle is

small.

In-plane shear stiffness Eg6 and in-plane shear

•damp4ng 1 -1 of angle ply Iraphi t Pnoxy com on Rite as

function of 6, using s/d as parameter are shown in Figures

9.33 and 9.34, separately. Maximum Eý6 and minimum In66

occur at 0=459. Larger dependences of E46 and in66 on 0

are observed for larger s/d. The reason why D'I /DD'm,

D96/DGm, FlI/nm, and Fn66/n'Cm are not presented in

drawings is that those values are very close to the values

of Ejl/Eý , E4/Gi , inll/"m, and Iq66/DGm separately.

Figures 9.35-9.38 present the nondimensional plots of

Dill Fnll, D96, and Fq66 of graphite epoxy composite

laminated with four kinds of lamination ([45/-4514.,

(452/02/-452/9021s, {0/9014., and [ 0 81s) as functions of

s/d. it is observed that for the same s/d, [45,'-4514, has

the highest values of D'6 and Fnll and the lowest values

JIkS.*ý at- )t 
'r,"O ~~
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of DI and Fq66- The values of D• 6 and F•66 for [0/9014s,

and for [081, are same, and those values are almost

independent of s/d. This is because ET and GLT of

fiber composites are assumed to be indendpent of the fiber

length. D;I of [06]s is, as expected, higher than D 'Iof

[0/9014s at the same s/d, but Fql of those two kinds of

lamination are surprisingly close. The D11 , F11', D96

and Fn66 of [452/02/-452/90214, are just somewhere near

the middle range of those of [45/-4514, and [0/9014s.

The characteristic property of [ 0 n/- 0 4ns is that

its D16 and Dý6 are very close to zero. For example,

Di 6/D' 1 or Dý 6 /D'11 of this lamination for graphite epoxy

composite is less than 0.02 for all angles, while those of

angle ply lamination are less than about 0.11 for all

angles. Numerical results show that Dil, F0l1, D46 , and

Fn66 of [02/-081s are very close (difference within 2%) to

those of [/-1 5 . But El and E; 6 (or In,, and in 6 6 )

are in general less (or greater) than those of [8/-015s

(maximum differences ranging from 13% to 30%).

9.5 Damping and Stiffness of Laminated Fiber Composite--
Energy Approach

There are twenty-one different kinds of material

damping induced from 'ýj/CjIj 1(i, j 1, 2... 6) for

anisotropic materials. In the energy approach, material

damping of structure is just the ratio of the sum of

C2 C ~j to the sum of k c2 C'j. Therefore, different

values of material damping could be observed for one
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material under different kinds of loading and boundary

conditions. In the author's opinion, damping analysis

through the energy approach is more acceptable than lami-

nated plate approach, because the energy approach consi-

ders the influence of all stresses on the dissipated

energy, while laminated plate approach considers one

stress at a time. The results of damping analysis through

the energy approach presented in Chapter 6 are discussed

in this section.

Figure 9.39 shows the difference between material

damping through the energy approach and through the lami-

nated plate approach for a 60x60x10 cross plied

(05/905/05) graphite epoxy composite under uniform in-

plane tension load along x direction. The difference is

mainly caused by the fact that there exists some stress

other than ax; for example, Txz is not negligible in

certain regions. The difference increases when the value

of s/p is increased. In other words, continuous fiber

composites have more apparent difference of damping values

through those two approaches than discontinuous (short-

fiber) composites do.

Figure 9.40 presents the influence of plate thick-

ness and of the lamination on the damping value by the

energy approach under in-plane uniform tension load. It is

noticed that either increasing the number of interfaces or

reducing the total plate thickness will, in general, reduce

the difference between damping values of those two
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approaches. It should also be noted that, for an isotro-

pic material under tensional load along x direction, the

damping value of the energy approach is same -as the value

of in 1l through the laminated plate theory app.:oach.

More numeiical results of using the energy approach

are under consideration. In particular, the effects of

interlaminar stresses on damping and stiffness of

laminated composites due to the difference in stacking

sequence, mismatch at the interfaces, and width-to-

thickness ratio a/h will be studied.

In addition, we are also interested in studying the

effects on damping due to various boundary conditions

under the same flexural load. The results will be

9.6 Experimental Results of Dampi3
and Stiffness

Figure 9.41 presents some experimental results by the

impulse hammer technique [35, 36] about material damping

and stiffness of graphite epoxy composite beams. Experi-

mental results of stiffness are very close to those of the

analytical results, while experimental results of damping

are not so close to the analytical results. A similar

trend is also presented in Figure 9.42 where experimental

results [35, 36] about damping and stiffness of off-axis

unidirectional continuous graphite epoxy composite beams

are compared with analytical results. Table 9.1 shows the

experimental results of damping and of the first mode
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nature frequency (this quantity is proportional to the

stiffness of the structure) of five cross ply short-fiber

glass epoxy composite plates. It is observed that high

value of s/p (either increase fiber length, s, or reduce

the gap between fiber tips, p) will increase the nature

frequency and decrease the damping.

9.7 Optimization of Dampi~ngand Speoific Stiffness

of Fiber Composites

Accozding to the prescription about optimizing damp-

ing iit Chapter 8, some optimum designs are discussed in

this section for graphite epoxy composites and for hybrid

composites keeping Vf equal to 0.65. The design vari-

ables include the fiber aspect ratio, s/d, and the ratio

of the longitudinal distance between fiber tips, p, to the

fiber diameter, d.

Table 9.2 shows the influence of weighting constants,

T1 a.kd T 2, on the optimum design for 0/90/0 graphite epoxy

composites under situations of case one. By increasing

T 2 , s/p is reduced; while by increasing T1 , s/p is

increased. These imply that to have smaller resonant

deformation, larger distance between fiber tips is

pr:eferred; while to have higher specific stiffness,

smaller distance between fiber tips is required.

Table 9.3 shows the optimum design for cross ply

graphite epoxy composites and hybrid composites under case

one situation and having the same total thickness, with

T 1 =1 and T2 =5. There is no difference in the optimum
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values of design variables s/d and p/d for 0/90/0 and

0/90/0/90/0 graphite epoxy composites. For the same total

thickness, with T1 =1 and T2 =5, discontinuous fibers give a

high value of objective function in the stacking sequence

0G/90G/0V/90K/s; while continuous fibers give high value

of the objective function in the stacking sequence

0 K/ 9 0 K/ 0 G! 9 0 G/ 9 0 G/s where the superscripts G and K repre-

sent graphite and Kevlar, respectively, and the fiber

composites having s/p=2593. can be treated as continuous

fiber reinforced composites. When comparing the value of

objective function of each optimum design for each case,

one can discover that 0 K/ 9 0 K/ 0 G/ 9 0 G/s has the highest

value of objective function. This indicates that the con-

tinuous hybrid fiber composite plate with the staiking

sequence 0 K/ 9 0 Ki 0 G/ 9 0 G/s is the optimum design for case

one.

Figure 9.43 shows the contour curves of objective

function of case one vs s/d and s/p (keeping T 1 =1, T 2 =5).

It is observed that there probably exists an acceptable

region as optimum design. In fact, the term (s/P)ave in

Tables 9.2, 9.3 and 9.4 is the average value of ratio s to

p at all points whose objective value is within 99.95% and

100.05% times of the objective value of the optimum design

shown in s/d and p/d items. Numerical results show this

region ranging from s/d=2000 to s/d over 9000 for case

one. That means, as long as s/p is kept equal to 53.1 and

s/d over 2000, one will get an acceptable optimum design
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(when T-1 l and T 2 =5) for 0/90/0 or 0/90/0/90/0 cross ply

graphite epoxy composite plates under case one conditions.

The optimum designs of case two (see Table 9.3) is
very close to those of case one, although D for those two

cases are different. It is because D1 2 and D66 are too

small relative to D11 and D2 2 (see Equation 8.20 and

Equation 8.38).

9.8 Conclusions

Since the material damping and stiffness of continuous

or discontinuous fiber composites depends upon many quanti-

ties such as stiffness ratio Ef/Em, fiber aspect ratio

s/d, longitudinal distance beetween fiber tips p, loading

(or fiber) angle e, fiber volume fraction Vf, fiber and

matrix damping values, and stacking sequence, it is not

feasible to discuss the material damping and stiffness by

considering all the possible variations of all the

independent quantities simultaneously. However, based

upon the numerical results presented in this study, we can

make the following conclusions:

A. About Unidirectional Fiber Composites

I. High damping could be achieved by small 0, small

s/d, and high p; while high stiffness could be

obtained through high VP small 0, large

s/d, and low p.

2. Damping of discontinuous fiber composites is no

less than that of continuous fiber composites.

N
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3. For small angle, high s/d gives high stiffness;

while low s/d brings high damping. For large

angles, damping and stiffness are independent of

s/d.

B. About In-Plane Randomly Oriented Fiber Composites

1. Relative to unidirectional fiber composites, in-

plane randomly oriented fiber composites have

lower stiffness at the price of keeping high

damping in all directions parallel to the plane.

2. Variations of shear damping and shear modulus vs

s/d are very close to those of in-plane damping

and in-plane stiffness, respectively.

3. Influence of Vf on in-plane damping becomes less

when s/d is smaller.

C. About Laminated Fiber Composites

1. In a laminated composite, there are eighteen

damping coefficients in general. For symmetric

laminates, the number of damping coefficients is

reduced to twelve. Among the twelve, there are

only four important coefficients namely; In,,

(or Tn2 2 ) (extensional), In66 (in-plane sheer),

FnlI (flexural normal), and Fn66 (flexural shear

or twisting).

2. As unidirectional composites, laminated composites

with higher damping are usually with lower

stiffness.
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3. In general, laminates with large fiber aspect ratio

sld and very small fiber tip spacing (P=O) will

produce high damping and high stiffness.

4. 'The analytical results in damping from the ener'-y

approach are higher than the corresponding results

obtained from laminated plate approach. Thia

implies that the interlaminar stresses tend to

dissipate more energy.

5. The influence of interlaminar stresses on damping

is very significant for the laminates with

large fiber aspect ratio s/d or relatively large

thickness-to-width ratio h/a.

RECOMMENDATI ONS

1. Use aligned fiber with large fiber aspect ratio

sld and very small fiber tip spacing (p=O)

(if fabrication process permits).

2. Use hybrid fiber composites. In particular, use

the combination of Kevlar-epoxy and graphite-

epoxy laminated composites. The advantage of using

such a combination is due to the higher damping in

Kevlar fibers and higher stiffness in graphite

fibers.

D. About Optimization

Optimurnization of damping and specific stiffness

depends on the preference of high specific stiffness

or hi~gh damping (Tl or T2), material property of

fiber, the stacking sequence for hybrid composite,
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and boundary conditions. A continuous fiber rein-

forced hybrid orthotropic composite plate with stack-

ing sequence 0 K/ 9 0 K/ 0 G/ 9 0 G is the optimum design for

clamped (or simply supported) square plate under the

free vibration.
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Table 9.1: Experimental Results of 05/905/05 Glass
Epoxy Composite Plates

s (mm) p(nun) d(mmU) Vf fr(Hz)

19. 1.59 .009 .558 92.8 .0042

25.4 1.59 .009 .565 95.3 .0041

38.1 1.59 .009 .575 97.1 .0040

25.4 0.05 .009 .579 109.8 .0036

Table 9.2: Influence of Weighting Constants on Optimum
Design for Case One

Lhamination Ti T2 /a -- u (/)ve 50 L

0/00 1 3 9022. 121. 74.4 1.27 .47

00// OZ 1 5 9022. 170. 53.1 1.19 .52

0/9/010 9008. 214. 42.1. 1.12 .56

0 t~ L0 0 5 9020. 267. 33.8 1.06 .60
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Table 9.3: Optimum Designs of Cross Ply Composite
Plates for Case One

Lamination TI T2  sId P/d- - p ave B' o
. PBS nm

(/90/0)G 1 5 9022. 170. 53.1 1.19 .52

G
(0/90/0/90/0) 1 5 8994. 169. 53.1 1.19 .52
G0G 0K 9K--

0 /90 /0 /90 Is 1 5 9007. 152. 59.4 1.29 .53

K/90X/G G
0_/90 /0G/90G/s 1 5 9993. 3.2 2593.1 1.11 .69

Table 9.4: Optimum Designs of Cross Ply Composite
Plates for Case Two

LaminatIon1 T2 S/d p/d (s/p)ave D'p.
rmG

__0/90/0)G 1 5 9010. 170. 53.0 5.10 .46
G-

(0/90/0Z90/0) 1 5 9020. 170. 53.0 5.10 .46

-1j5 9010. 12. 59.3 5.53 .48
K K G G

0LK90/J /90_/s 1 5 9993. 3.2 2747.8 4.80 .65

Iz



APPENDIX A
ENERGY EXPRESSION OF DAMPING FOR LAMINATED COMPOSITES

Equation 2.22 indicates that the material damping, n,

equals to the ratio of the energy dissipated in a cycle,

(UD'cyc' the product of 2 f, and the maximum strain energy

stored in the body, Us, under a periodic vibration. Since

the maximum strain energy of a beam under static load and

unCier first mode vibration are equal, if the maximum

deflection are the same. If the material damping of this

Ateart is no..w, th e energy dissipated LirL the beu-,,, wI2ithii a

cycle of the first mode vibration can be determined by

(UD)cyc = 27 n Us A.1

where U. can be determined by calculating the strain

energy of the statiscally-deformed beam having the same

amplitude of the deflection as that of the first mode

vibration. As it is well known that the dominant stress

in a beam under flexure vibration is normal stress, say

Ox. Therefore, Us and (UD)cyc can be obtained

approximately as

UTs = aox x dV A.2

146
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and

(UD)cyc = 2a qx Ox ex dV A.3

Where cx is the normal strain, and Tx is determined by

Ex/E' . To be more accurate, all stresses and strains in

the beam should be included when calculating the maximum

strain energy and the dissipated energy.

Ungar and Kerwin (56] derived the expressions for the

loss factor of any series-parallel array of m viscoelastic

springs

m
z (UDj) cyc

-= =1 A.4m --
Z 2r Us-_-

1 2-

Usj = kj xj A.5

where Usj denotes the maximum strain energy stored in a

deflection xj in the jth lossless spring of stiffness kj,

and (UDj)cyc denotes the energy dissipated in the jth

viscoelastic spring during a cycle. Since there are six

different components in the stiffiness matrix for an

orthotropic material, one can treat an orthotropic

material as a structure composed of six springs.
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Consequently, the material damping of a laminated n plies

composite, n, in the first mode vibration can be

determined by

n
Z (qUD)Y

r] q=1 A.6
n

q=l q--

where

qus=f O £fdV = f 1 k Cj- dV

Vq Vq A.7

(qUD)cyc = 7 f k CCj nkj Cj dV w fc k C;j 1j dV

Vq VqA.8

Cqj + i C. j nkj = Ckj + i Ckj =Ckj A.9

In which Vq is the volume of the qth layer in the

laminated composite, Cj , C~j and Ckj are the storage

moduli, the loss moduli, and the complex moduli for a

viscoelastic material, respectively.



APPENDIX B
FORMULATION OF FINITE ELEMENT METHOD

This appendix briefly prescribes the formulation of

the finite element method utilized in energy approach to

determine the displacement and the strain fields for an

elastic body. The material constants are also presented

here.

B.1 Stiffness Matrix

The nonzero elements of stiffness matrix [C] for an

orthotropic material when its coordinates coincide with

principal coordinates are given in Reference [571 as:

C 1 1 = (1 - " 2 3 v3 2 )EI A B.1

C1 2 = (v 1 2 + "3 2 v 1 3 )E 2 A B.2

C1 3  (v 1 3 + v 1 2 %2 3 )E 3 A B.3

C22 ( - v 1 3 v31)E2 A B.4

C2 3  (v 2 3 + v21 VI 3 )E 3 A B.5

C3 3  1 - v1 2 v2 1 )E 3 A B.6

149
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C4 4 = 23B.7

C 5 5 =31 B.8

C 6 6 =GI 2  B.9

where

S1 - f2 \-2 3 v 3 2 - 3 3- 2v 2 1 3 2 ' 1 3  B.10

Since the material properties of a laminar fiber composite

with the coordinates parallel to and transverse to the

fiber, as Figure -. 1. can be treated as transversely

(in 2, 3 directions) isotropic,

S-2

Figure B.I: Principal coordinates of fiber composite
material
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one has

E1  = EL

E2 = ET

E 3  = ET

B. 11
G12 = GLT

G1 3 = GLT

G~E T
G2 3 = ET

TTI~iTT'

and

"V12 - "LT

"2LT ET

v2 3 = VTT' BA12

v3 2 = VTT'

"V13 VLT

"'31 = VTL
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where EL, ET, GLT: vLT are defined by Equations 3.13,

3.15-3.17, and vTTI is assumed to be the Poisson's ratio

of the matrix. By substituting Equations B.11 and B.12

into Equations B.l-B.9, the [C] matrix of transversely

isotropic material is then obtaine'. Equations B.11 arid

B.12 show that there are only five independent material

constants, namely, EL, ET, GLT, VLT, and vTT"

B.2 Formulations of Finite Element Method

A three-dimensional elastic body bounded by surface S

is loaded by concentrated forces p on nodes and surface

traction t on surface Sl. Assume that the body force is

negligible and that the whole system is adiabatic and

conservative. According to the principle of stationary

potential energy (58], the equilibrium is ensured if the

total potential energy is stationary for variation of

admissible displacement, i.e.

AF
6 (U - W)= 0 B.13e

where U is the strain energy, and we is the work done by

external loads. In fact, in the elastic case, potential

energy is not only stationary but is a minimum [59].

If there is not any initial stress or strain, the

strain energy U and the woik done by the external load are

U 1o} dV B.14
2 r--

III_

I
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and

m T + f TWe = 2 {p} {ul + / Itl Jul dA B.15

i=j i i f
Si

where

T
S{} = [Cx Cy yz xy] B.16

o = [x Oy Oz tyz xz Txyl B.17

T

{al = [(Lx ayi GIz] B.17

T

ip! [ P PB.18

{U } [xi Uyi Uzi] .1
i

T

fU} = [ux U y UZI B.20

T

{t} = [tx ty tzJ B.21

in which u is the nodal displacement in x direction at

the ith node, and Pxi is the coicentrated force at the ith

node in x direction, m is the total number of nodes where

concentrated load is applied.
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By introducing stiffness matrix [C] and the shape

function matrix [N], i.e.

{Ol = [CI {I} B.22

J = [N] {qj B.23

strain {f} can be expressed as function of nodal

displacement {q} by using strain-displacement relation-

{i} = [L] {q} B.24

Therefore, Equations B.14 and B.15 can be rewritten as

1 T T
U - {q} [LI [C] [L] {q} dV B.25

2

e T T=TT
w{} [NJ {q} + Iti (N] {q} d

i=j i i

B. 26

By using Equations B.25 and B.26, a system of 2xn equa-

tions is obtained from Equation B.13, if the total number

of nodes is n.

[ki {qJ = {f} B.27

~.Ifl? .At .~ ltt % t % * llt % -~j~ fl~ - -. , .- - - -
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where

T
[k] = LI [C] [L) dv B.283 nx3 n

{q}3nxl = [qxl qyl qzl qxn qyn qzn]

B.29

m T T
{?} = J {P} [N] + {t} IN] dA

3nxl i=j i

B.30

In this study, the interpolation functions of linear

and parabolic isoparametric elements (eight nodes and

twenty nodes, respectively) [551 are chorci for shape

functions. Each element has the same thickness as the ply

thickness of fiber composite. Once the nodal displzcement

{q} is determined by solving the system equations

(Equation B.27), the displacement and the strain fields

can be obtained by Equations B.23 and B.24, respectively.

." -. h, U 'ýWW- -Iý ',ý-ý!ý - -
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